Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We establish a nonlinear nonconservative mathematical framework for the acoustic-electro-elastic dynamics of the response of a piezoelectric disk to high-level acoustic excitation in the context of ultrasound acoustic energy transfer. Nonlinear parameter identification is performed to estimate the parameters representing nonlinear piezoelectric coefficients. The identification is based on exploiting the vibrational response of the disk operating in the thickness mode under dynamic actuation. The nonlinearly coupled electro-elastic governing equations, for the piezoelectric receiver subjected to acoustic excitation, are derived using the generalized Hamilton's principle. The method of multiple scales is used to obtain an approximate solution that forms the basis for parameter identification. The identified coefficients are then experimentally validated. The effects of varying these coefficients on the nonlinear response, optimal resistive electrical loading, and power generation characteristics of the receiver are investigated.more » « less
-
Ultrasound acoustic energy transfer systems are receiving growing attention in the area of contactless energy transfer for its advantages over other approaches, such as inductive coupling method. To date, most research on this approach has been on modeling and proof-of-concept experiments in the linear regime where nonlinear effects associated with high excitation levels are not significant. We present an acoustic-electroelastic model of a piezoelectric receiver in water by considering its nonlinear constitutive relations. The theory is based on ideal spherical sound wave propagation in conjunction with the electroelastic distributed-parameter governing equations for the receiver’s vibration and the electrical circuit.more » « less
An official website of the United States government
